
Legal Accountability as Software Quality:
A U.S. Data Processing Perspective

Travis D. Breaux
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania, United States
breaux@cs.cmu.edu

Thomas Norton
School of Law

Fordham University
New York, New York, United States

tnorton1@fordham.edu

Abstract—Software and hardware innovation has led to new
consumer products and services with significant benefits to con-
sumers and society. These advances, however, can come with great
cost to society when they fail to comply with government laws and
regulations. While compliance failures do result from technical
missteps in design, there is also a wide gap between the technical
expertise and culture of legal analysts and software engineers,
as well as competing priorities between legal requirements
and business objectives. In this perspective paper, we propose
changing legal compliance from a corporate oversight activity
to a principal design activity, wherein lawyers and software
engineers employ enhanced methods and tools tailored to bridge
the cultural and knowledge gap and assess legal and business
trade-offs. To that end, we describe a new software quality,
called Legal Accountability, which can be evaluated alongside
other qualities, such as usability, modifiability, performance and
testing. Legal Accountability has five properties that lawyers and
designers must attend to, including legal traceability, complete-
ness, validity, auditability and continuity. We illustrate the quality
with examples from the U.S. data processing perspective, and
prior work in requirements engineering, before concluding with
future and ongoing research challenges.

Index Terms—law, regulations, software quality, compliance

I. INTRODUCTION

Within the last two decades, software engineering innova-
tion has propelled new consumer products and services into
nearly every aspect of daily life. An innovation culture has
emerged that celebrates the old Facebook motto “Move Fast
and Break Things,” while encouraging entrepreneurship and
rapid software deployment to quickly assume a position of
market leadership. This culture has in some ways diminished
the role of requirements in managing stakeholder expectations,
particularly in the push toward agile development. Due to
software’s ubiquity and pervasiveness, untethered innovation
risks harm to the public, such as reduced safety, privacy and
security. When professions fail to self-regulate, governments
enact laws that guide businesses about how to innovate without
compromising societal goals [73]. In addition, investors have
pushed back on the old motto, asking companies to increase
stakeholder accountability and to design “virtuous” software
that better achieves societal goals [113].

Over the past two decades, researchers have proposed new
methods and tools to improve accountability to law, including
techniques to model legal requirements [14], [39], [54] and

trace legal requirements to other software artifacts [21], [44].
Such techniques have been criticised for being developed with-
out substantial input from practitioners of law [9]. Moreover,
while these advances improve our understanding of challenges
and solutions, compliance with law remains elusive for many
companies. In 2021, the U.S. Federal Trade Commission
(FTC), despite limited resources, made an example of five
companies that violated the Children’s Online Privacy Pro-
tection Act (COPPA) Rule, levying fines totalling over $2
million, imposing strict multi-year compliance and reporting
requirements, and halting at least one company’s ability to
process children’s information. In the EU, over 440 companies
were fined over $1 billion combined for failing to comply
with the General Data Protection Regulation (GDPR). And
yet, there is an even larger cost to society, because regulators
are overwhelmed and most violations go unresolved. The FTC
reports needing “millions of dollars to hire more experts”
across product development, data privacy and analytics, algo-
rithms and software development [61]. Similarly, 98% of cases
referred to the Irish Data Protection Authority, the GDPR’s de
facto enforcer for all of Europe, remain unresolved, and only
9.7% of Irish DPA staff are technology specialists [95].

In many cases, enforcement actions like those referenced
above were avoidable at design-time by integrating a few
additional steps into data processing (e.g., requesting consent
from users), or through enhanced reasoning about the legal
implications of one design decision versus another (e.g., how
to delete data across multiple services, or whether a lossy hash
algorithm is a reasonable de-identification method). Even large
companies, who are best equipped to afford the legal and en-
gineering expertise needed to develop their own methods, are
failing to comply with the law. In this respect, we believe there
is a gap between requirements and design that continues to
be unaddressed, despite advances in requirements engineering
methods to comply with laws. Based on our experience in
studying this area, we identified three unaddressed issues that
contribute to this gap: (1) the differences between the culture
of law and software engineering; (2) the gap in differing tech-
nical expertise between legal analysts and software engineers;
and (3) the competing priorities between legal requirements
and business objectives.

In this paper, we propose a new perspective to address this

shortfall, which is to raise the activity of compliance to become
a first-class software quality, which we call Legal Accountabil-
ity. Similar to other qualities, such as performance and testabil-
ity, Legal Accountability requires additional requirements and
design activities to reduce the cost of showing how software
is accountable to the law. This includes activities across the
software development life-cycle (SDLC). Herein, we focus on
requirements and architecture-related activities and note that
quality assurance among other activities are not covered, but
are also critical to assuring Legal Accountability. Unlike other
qualities, and in addition to the SDLC, Legal Accountability
introduces the challenge of aligning expectations between
legal analysts and software engineers with regard to their
interpretation of the law. In addition, Legal Accountability
is a national and international quality concern, that must be
tailored differently depending on the operative legal context
in the jurisdiction in which the software is operating. For
example, the extent to which court records are digitized in
a jurisdiction can affect ease of access to a software’s legal
context; or, how courts adjudicate legal cases (e.g., civil versus
common law systems) affects how law is interpreted, as does
the extent to which regulators in a jurisdiction have authority
to enforce the law. Although Legal Accountability is a cross-
national concern, this paper adopts a US-centric perspective
to demonstrate Legal Accountability’s application in context.

The remainder of this paper is organized as follows: in
Section II, we discuss the cultural and expertise differences
in law and engineering; in Section III, we introduce back-
ground on software quality and show how it can be used to
frame Legal Accountability and other quality trade-offs; in
Section IV, we introduce Legal Accountability as a composite
of five properties, which we contextualize using prior work in
requirements engineering to identify advances and shortfalls
in the state-of-the-art. This review of prior work is extensive,
but not systematic, and thus important and relevant work is
potentially missing. In Section V, we present new, and revive
old, research challenges that arise from this perspective, with
our conclusion presented in Section VII

II. LANGUAGE, CULTURAL AND EXPERTISE CHALLENGES

Legal Accountability faces cultural and expertise challenges
from integrating law and technology. First, legal requirements
are written in the language of law to govern entire indus-
tries [88] and not only one company or product, whereas
software requirements are written in the language of engineers
and users with a specific product or software feature in mind.
This broad and encompassing audience for legal requirements
leads to purposeful ambiguity which is viewed by lawyers
as necessary for law to function properly. Because laws are
written about the technology of the day, legal requirements
can refer to outdated concepts, such as “workstations,” while
ignoring modern innovations, such as “tablets” and “mobile
devices.” Ambiguity and dated language require interpretation
to understand the intent of the law. In addition, legal require-
ments can describe any type of requirement, from high-level,
vague and aspirational goals to low-level, design constraints.

Designers must assess how to respond to legal requirements
by identifying overlaps with software requirements [15], by
negotiating requirements conflicts [77], and by refining vague
or ambiguous legal requirements into actionable software
requirements [79], while aligning knowledge from the legal
context with decisions in the design context. In this respect,
legal requirements can disrupt business objectives by shifting
priorities among software qualities. Finally, the culture of law,
which is generally sensitive to legal risk and is often motivated
to minimize it, is distinct from and sometimes in conflict with
the culture of software development, which emphasizes fast
releases and untested innovation, while allowing “policy” to
emerge from what users and society accept as the new design
status quo. Further, in this setting, a lawyer has a duty to their
organization to minimize risk to it, which may conflict with
the societal and ethical goals embodied in law and regulation..
Lawyers are trained to follow precedent, and the nature of law
practice largely rests on applying guidance from previous case
law or interpretation of legislators’ intent. And the business of
law is largely built around firms’ and the ability to identify
and mitigate risk efficiently. From the very beginnings of
their legal education, those who enter the legal profession are
trained to conduct nuanced analysis of situations that may be
more ambiguous than they initially seem, and for which more
than one approach may be correct. In contrast, laypersons
may approach the same problems more simplistically [43].
In nearly all of law school’s doctrinal courses such as torts,
contracts, property, criminal law, and civil procedure (among
others), law students are taught using a method that relies on
thorough analysis of court decisions to derive legal principals
and examine their functioning [4], [31]. But each decision,
by its very nature, represents a situation in which a business,
personal, or social relationship malfunctioned – so much so
that court intervention was necessary to achieve a resolution.
Many years focusing on such stories conditions one to a
legal culture in which risk aversion is dominant. Software
engineers, by comparison, use plan-driven software processes,
such as variations on the V-model [32] or Spiral [10], or agile
methods, such as Kanban [2] or Scrum [110]. Herein, we
assume software developed using agile methods, motivated by
a recent survey of software developers, where agile methods
were used by 94% of respondents, whereas as few as 7%
report using plan-driven methods [71]. Finally, plan-driven
methods frequently integrate risk analysis activities, whereas
agile methods emphasize fast delivery at the cost of limited
documentation [11], which sits in contrast to the legal culture
of risk aversion.

III. SOFTWARE QUALITY, AND COMPETING PRIORITIES

Software quality attributes are cross-cutting design and val-
idation concerns that include qualities that are critical to satis-
fying requirements, such as modifiability, performance, safety
and security. Software quality can arise as non-functional or
quality requirements [40], and softgoals [84]. These require-
ments necessarily affect how software designers choose among
various technical means, sometimes called architectural pat-

terns or tactics, to rationalize a quality increase [5]. Effective
team coordination and communication, requirement specifica-
tion quality, and responsiveness to changing requirements can
affect how well verification and testing activities guarantee
software quality [8]. Several qualities are guided by industrial
standards, such ISO 9241-11:2018, which describes usability
or “the extent to which a system can be used to achieve specific
goals.” Under ISO 9241-11:2018, software is thus designed to
be more usable. To date, there are no standards on how to
design software to be more legally accountable.

Software quality introduces quality trade-offs, where de-
signers can be forced to decrease one quality in order to
increase another. Trade-offs can be examined using goal refine-
ment alternatives [85]. Software architects play a key role in
engineering quality requirements [24]. Architects can use qual-
ity attribute scenarios to align requirements with architectural
design decisions, as well as architectural tactics, which are
reusable, techniques to achieve a specific quality attribute [5].
For example, deferred binding, which is an architectural tactic
to increase modifiability, can be implemented using plugins.
Deferred binding can also allow attackers to introduce mali-
cious code at runtime, thus reducing security. Lost quality can
sometimes be remediated, e.g., plugins can be checked for a
trusted digital signature prior to binding to thwart malicious
code injection. In other cases, decreases in one quality must be
accepted to increase a higher priority quality, e.g., encrypting
communications at the cost of performance needed to encrypt
data in transit. Softgoal satisficing can be used “to determine
the degree to which a set of nonfunctional requirements is
supported by a particular design” [83].

Laws can be motivated by a single quality attribute, such as
safety, and further defined by specific domains. In the U.S.,
the safety of software used in medical devices, automobiles
and aircraft are governed by separate regulatory frameworks.
Software used in medical devices is regulated in the U.S.
by the level of risk to patient life, wherein the highest level
of approval requires traceability among design, testing and
risk management plans [51]. Similarly, Article 25 of the EU
General Data Protection Regulation (GDPR) requires “data
protection by design and default,” in which developers are
required to design for a quality without specific guidance
on how to conduct design activities. Designing for a legally
required quality may satisfy one but not all legal rules.

Software process focused, such as those described above,
enumerate requirements and design processes that must be
followed, whereas other regulations are focused on specifying
design constraints on technology. The U.S. Information and
Communication Technology Accessibility 508 Standards and
255 Guidelines, which governs information accessibility by
individuals with disabilities, defines permissible display color
and contrast levels, font sizes, and file formats, including
ANSI/AIIM/ISO 14289-1:2016 (PDF/UA-1).

Finally, other laws increase quality by regulating business
practices, such as the U.S. Health Insurance Portability and
Accountability Act (HIPAA) Privacy Rule, which regulates
which healthcare practices must adopt specific privacy require-

ments. These laws often include legal ambiguity, which must
be interpreted by designers [79], [94].

Unlike qualities that originate in design or development,
Legal Accountability is a quality that arises from compliance
activities, beginning in a review of laws, legal precedents
and enforcement actions and leading into requirements and
design. Legal Accountability is more than compliance, which
has largely become an oversight activity where engineers apply
canonical solutions to legal problems at the direction of legal
analysts. In contrast, Legal Accountability benefits from co-
design activities involving legal analysts and software engi-
neers. In addition, where laws aim for organizations to achieve
societal goals, and because technology frequently outpaces
law, Legal Accountability can be achieved by engineers who
move beyond any specific regulatory rule to achieve the legal
goal, and by identify potential pitfalls and software failures
not explicitly described by the law [12]. We envision Legal
Accountability being applicable to any regulatory framework,
and that its utility will be greater when regulation lacks
specific technology-focused requirements, or when the regu-
lated qualities are in competition with other business-driven
qualities. Legal Accountability can be used to rationalize
design decisions in ambiguous regulatory contexts, such as
those that govern business practices, versus technologies and
their engineering process (e.g., building codes).

IV. LEGAL ACCOUNTABILITY

The manner in which requirements and software engineers
approach software quality is ideal for addressing the current
gap in software compliance. Quality is realized through a com-
position of supporting requirements that introduce alternatives
and require trade-offs [85]. Quality fundamentally changes
how software is designed, because it must support activities
to demonstrate the quality (see ISO 9000:2015).

We define Legal Accountability as the extent to which
software is accountable to law and regulation. Similar to
other software qualities in design [5], Legal Accountability
is increased by design decisions of software engineers as
observed through measurable responses by the system. Unlike
other qualities, Legal Accountability is predicated on bi-
directional communication between software engineers, who
must communicate to legal analysts how the software complies
with law, and legal analysts, who must clarify the intent and
context of the law. Therefore, we identified five minimum
properties of Legal Accountability that are motivated by a
software’s need to demonstrate accountability to law and reg-
ulation, which embody societal and ethical goals recognized
by lawmakers. Demonstrating accountability to law requires
answering the following questions: in the event of a claim of
legal non-compliance, one must demonstrate what was done
to comply with a legal rule (Traceability), how does one know
they have covered all legal concern (Completeness), and what
design-time and runtime evidence exists to defend against a
legal claim (Auditability)? The strength of the position as a
defense depends on knowing that a decision is legally correct
(Validity), and on being responsive to change: as societal or

ethical goals change, the law changes, or the software changes,
ensuring that Legal Accountability is preserved by revisiting
such changes in the requirements and design (Continuity). A
few of these properties have received significant attention in
the requirements community, e.g., traceability, whereas others
have received far less, e.g., validity.

In the remainder of this section, we refer to legal rules
as rights, which describe what actors are permitted to do,
obligations, which describe what actors are required to do,
and prohibitions, which describe what actors are prohibited
from doing. Duties are obligations imposed on one actor by
another actor who exercises their rights. Formal taxonomies
for legal rules have been based on Deontic Logic [56] and
Hohfeld’s legal concepts [49].

A. Traceability

Traceability holds, if every obligation, duty and prohibition
that covers the software is traceable to a design decision.
Companies may further wish to trace rights, which yield
discretionary requirements, should the company choose to
exercise those rights. Software requirements can be extracted
from laws and regulations [16], and such artifacts need to
be traceable back to legal citations to measure legal require-
ments coverage [42]. In addition to handling legal citations,
requirements engineers must balance rights and obligations,
reconcile exceptions to legal rules, and resolve ambiguity
when extracting legal requirements [16].

Traceability depends on two critical techniques: identifying
legal primitives, and resolving cross-references. Methods have
been introduced to automatically annotate legal texts to iden-
tify rights, obligations and permissions, including techniques
based on context-free grammars [86] and regular expres-
sions [97] and constituency and dependency parsing [105].
Cross-references must be resolved to identify dependencies
among legal requirement [14] to answer questions, such as
where are terms-of-art defined, or does this requirement have
any refinements, follow-on obligations, or exceptions? Tech-
niques often employ schema to formalize the text’s paragraph
structure [14], [98], followed by regular expressions to detect
cross-references in texts [98]. Annotations can be used to
query legal texts for knowledge discovery [104].

Traceability supports the mapping or linking of legal re-
quirements into software requirements artifacts that are more
familiar to designers or more easily integrated into existing
design processes. Target artifacts to which legal requirements
can be traced include enhanced requirements templates [103],
business models [99], and regulation scenario models with
compliance links [37]. When deriving requirements or other
software artifacts from law, tool-supported, document-based
methods are needed to encode trace links from rules in legal
texts to these artifacts [36]. Traceability information models
can be configured to select the most relevant trace links
between critical requirements and design decisions [108].

Techniques to automate traceability in compliance take
advantage of machine learning [21], [44]. This includes ap-
plications of probablistic network models that were applied

to trace among HIPAA security regulations and healthcare
product requirements [21], and deep learning with word em-
beddings applied to positive train control requirements that
combined regulatory rules with system requirements into a
single dataset [44].

The above advances in traceability are necessary to address
compliance in software design. Only tracing from legal text
to software artifacts excludes the broader legal context, which
we now discuss.

B. Completeness

Completeness holds, when for a law that covers a busi-
ness practice supported by software, every obligation, duty
and prohibition imposed by that law is accounted for; this
includes obligations, duties and prohibitions that follow from
the business or other parties exercising any rights granted to
them by the law [16]. Completeness encompasses multiple
considerations, including: (1) whether a practice is governed
by a particular law; (2) if governed, what must be done to
comply with the law; and (3) if governed, what are the risks
of noncompliance (i.e., should the practice be designed to
comply). To achieve completeness, it is necessary to compre-
hend to the entire the legal context, which includes laws and
regulations, legal precedents, and enforcement actions. While
it is impossible to guarantee completeness1 and assert that no
element of this context has been missed, designers should plan
to periodically extend and update their comprehension of the
legal context.

1) Laws and Regulations: In the U.S., laws consist of
statutes, enacted by a legislative body, and regulations interpret
statutes as directed by the legislature to yield rules that orga-
nizations must follow to comply with the law. Laws and reg-
ulations impose direct requirements in the form of duties and
obligations, and can establish relevant rights. Guidance doc-
uments and other instruments, which are often non-binding,
help to clarify existing obligations. These requirements are
written to describe systems in one or more industries, thus
they can closely align with system requirements in software
engineering [88]. The subject of legal requirements can be
organizations, a stakeholder or a technology. Legal require-
ments may be goal-oriented or they may describe low-level
design constraints. Companies may need to comply with laws
from multiple jurisdictions [38], [41]. Several distinctions are
important for engineers to understand, including legal rights,
obligations, and permissions, and relationships among require-
ments, such as exemptions and refinements [14], [16]. Legal
requirements can be framed as rules versus standards: rules
provide “clarity and forewarning,” whereas standards provide
“greater flexibility for interpretation” by engineers [68].

Yet obligations, duties, and exemptions prescribed in statu-
tory law or regulation are not always clear. Indeed, law and
policy often avoid clear specification in favor of purposefully
ambiguous rules that require interpretation. Oftentimes, law

1Requirements engineers refer to “coverage” which accommodates incom-
pleteness. Because ignorance of the law is not a legal defense, we chose
completeness to describe this property.

and policy makers harbor uncertainty about when a particular
law or policy will apply, and therefore build in flexibility
to account for unknown or unpredictable circumstances. Or,
drafters of law and policy may be unsure about how to
solve a particular identified problem, and turn to ambiguity to
support experimentation toward determining the most effective
problem-solving methods.

2) Legal Precedents: Ambiguities in legal rules are often
resolved through after-the-fact and retroactive oversight by
courts and similar adjudicative bodies. Through cases, courts
resolve disputes that arise between parties concerning the
application of a law or regulation to a specific set of facts.
Through the adjudicative process, ambiguities in law and
regulation are interpreted and clarified over time by judicial
rulings on specific situations. In a recent case involving the
California Consumer Privacy Act (CCPA), a U.S. federal
court was called to interpret the applicability of statutory
provisions defining “businesses” and “service providers” to
a cloud software company that suffered a cyberattack as the
result of having an allegedly “deficient security program.” The
company argued that the CCPA provisions it was alleged to
have violated only applied to “businesses,” and the company
was not a “business” under the law, but rather a “service
provider.” After reviewing the company’s practices, the court
disagreed, and determined that the company did qualify as
a “business.” Further, the court concluded that the statutory
definition of “business” is a broader term that encompasses
“service provider,” and therefore, the company could not evade
CCPA liability even if it were a “service provider.”

Such cases form binding legal precedents that become an
additional source of legal authority alongside statutes and
regulations. The gradual development and extension of law and
regulation through cases with specific fact patterns allows for
careful consideration of meaning and effects at a level of gran-
ularity that is usually impossible to reach during the drafting
process [30]. As a result, the decisions of adjudicative bodies
become essential to comprehending and implementing law and
regulation, and thus crucial to establishing the legal context
and completeness. In the example above, the clarification
on the interpretation of business affects how every company
covered by the CCPA should interpret this definition. Thus,
binding legal precedents represent reusable legal knowledge
that designers can integrate into their compliance practices.

3) Enforcement Actions: Enforcement actions include legal
actions arising in response to commercial failures. Enforce-
ment actions by regulatory or oversight bodies constitute an
additional source of legal requirements that must be accounted
for in accountable systems. This is especially true in the U.S.,
where government agencies at the federal, state, and local
levels are responsible for enforcing laws passed by legislative
bodies. [See, e.g., Chevron U.S.A. Inc. v. Nat. Res. Def.
Council, Inc., 476 U.S. 837 (1984)] For example, the Federal
Trade Commission (FTC) is the de facto privacy and data
protection authority in the U.S. The FTC polices unfair or
deceptive acts in commerce to address privacy and data pro-
tection wrongs. Settlement agreements between the FTC and

alleged violators make up a robust body of jurisprudence that
organizations must examine to ascertain the current boundaries
of prohibited and permissible conduct related to privacy and
data protection [106]. Thus, enforcement actions are a valuable
tool to gauge the regulatory risk associated with particular
courses of conduct.

Legal analysts play an essential role in achieving complete-
ness. A legal analyst specializing in a particular subject area,
such as data protection law, will be fluent in not only existing
statutory or regulatory law in that area, but in proposed law
as well. In addition, the legal analyst will track the develop-
ment legal interpretations of courts and adjudicative bodies
by reviewing judicial opinions, the outcomes of enforcement
actions, and documents supplying guidance on best practices
for complying with relevant laws. Through the practice of
law, as well as teaching, publishing, and presenting, legal
professionals continuously hone their skills and expertise to be
current and competent. In many jurisdictions across the globe,
legal professionals are subject to continuing legal education
and training requirements even after entering practice. Armed
with legal fluency, legal analysts can help define, interpret,
and convey the legal context to software engineers to better
account for relevant obligations, duties and rights.

C. Validity

Validity holds, if every traceable software requirement and
design decision is a valid interpretation of a legal requirement
and its legal context. Because validity is a joint decision by
the legal analyst and software engineer, validity benefits from
designs that are simple and explainable to non-engineers with
legal training, and that have guarantees in spite of dynamic,
distributed and parallel processes that increase complexity.
Interpretations of law and policy can be open and varying due
to textual vagueness, incompleteness and syntactic, semantic,
and referential ambiguity [79]. Such ambiguity and vagueness
can yield increasing flexibility in how designers determine
what is legally valid [101], while also increasing perceived risk
by users [7]. What is legally valid is also subject to decreasing
flexibility in light of increased enforcement risk [13].

In requirements engineering, important but little work has
been done to understand the interpretability of law. Legal
experts were shown to demonstrate higher rates of statistical
agreement than technical professionals or lay people, when
deciding if an organization is covered by a law and whether
two legal requirements are similar or different [43]. Software
engineering graduate students exhibit low agreement when
deciding if a requirement satisfies an organization’s legal obli-
gations, including when using the Wideband Delphi method to
organize engineers into a ritualized agreement exercise [78].
The above research shows that deciding coverage is difficult
for engineers alone; whereas, crowdsourcing was shown to
resolve lexical, syntactic and semantic ambiguity in law when
choosing the correct definition of a term with 87% accuracy, as
compared to expert decisions [29]. Techniques in requirements
engineering have been criticized for having a “textualist view”
of the law, often examining only a single requirement or single

law, while ignoring the larger legal context, such as case law,
doctrinal work, and unofficial judicial practice, and notably
criticized for excluding the role and input of legal experts [9].

To address this limitation and properly advance the state-
of-the-art, we envision one way to establish legal validity
using a bidirectional design review. In Figure 1, we envision
three distinct phases in the review: (1) legal comprehension,
wherein the legal expert and software engineer work together
to comprehend the legal context as it applies to the existing
or planned software; phase (2) design expression, wherein the
engineers propose a new or modified design to satisfy legal
requirements; and phrase (3) design recording, wherein the
justified design proposal is summarized as issues recorded in
a modern issue tracker, including features for any new design
proposals, and bugs when elements in an existing design do
not satisfy new requirements.

Question to clarify

Question to clarify
using hypothetical

Legal Comprehension Design Expression Design delta recorded in
an Issue Tracker

Feature: Personal information
retention service

Bug: Plugin interface doesn't
register personal information on
setup

Bug: Plugin interface doesn't
register data deletion callback

Design proposal

Support Challenge

Response

Fig. 1. Establishing Legal Validity through Design Reviews

During comprehension and expression, the parties engage in
an inquiry cycle-like discussion [90] that is supported by argu-
mentation structures to clarify legal boundaries, and justify and
challenge design proposals and counter proposals. Such struc-
tures have been proposed in RE in prior work: including design
arguments [55], [59], [92] based on the Issue-Based Informa-
tion System (IBIS) [69], security arguments [46] using the
Toulmin model [65], [115], and legal compliance arguments
integrated into goal models [53] based on the acceptability
evaluation framework [57]. Tools to identify legal rules, cross-
references and ambiguities from legal texts [29], [97], [98]
can provide inputs to these discussions, however, establishing
legal validity must integrate the broader legal context to
include non-binding guidance documents, legal precedents
from court cases that add judicial clarity, and histories of
regulator enforcement actions. Moreover, these discussions can
result in design alternatives that can be documented using goal-
modelling tools that support argumentation [53].

The three phases shown in Figure 1 build on theory in cross-
functional teaming to promote effective knowledge transfer
across legal analysts and engineers using knowledge tran-
scendence [74], and front- and back-loading knowledge trans-
fers SRJ16, while recognizing the transfer impact of language
differences, subject-matter novelty and value systems [28].

Legal validity is established by tracking discussions during
comprehension and expression, and auditability (see Sec-
tion IV-D) is supported in the expression phase as static
evidence (e.g., library and service specifications, and their pre-
and post-conditions) and dynamic evidence (e.g., log data)

described at design-time and collected at runtime. While we
present comprehension and expression as distinct phases, they
are more likely intertwined.

Unlike traditional design reviews, the envisioned approach
must integrate with agile methods by reusing existing in-
frastructure, such as user stories and issue tracking systems.
This requirement is critical as some developers prefer defined
compliance processes that prioritize the software release pro-
cess [60], and agile methods have been widely adopted to
support fast and responsive release cycles [71].

To further illustrate Figure 1, we present Table I that shows a
hypothetical design discussion modeled on prior research [58]
to comply with §1798.105(a) of the California Consumer
Privacy Protection Act (CCPA), which reads: “A consumer
shall have the right to request that a business delete any per-
sonal information about the consumer which the business has
collected from the consumer.” Indentation indicates a threaded
response to an earlier comment. The discussion illustrates
exchanges where legal comprehension and design expression
lead to design decisions. Each statement is labeled by the
participant role (engineer, legal analyst) and a unique statement
number (/S1, /S2, etc.) In the left column, engineer #1 aims to
interpret a legal definition by positioning a technical example
(S1), which is justified by the legal analyst (S2) and challenged
by engineer #2 (S3). To support auditability, the structure to
comprehend the definition of “personal information” on the
left illustrates the legal and design rationale for excluding
web logs from functions created to satisfy legal rules, such
as the purge function to support 105(a) described on the right.
This is an example of a static design element that originates
in the comprehension phase. In the right column, engineer
#1 proposes a design concept for having developers register
personal information types by category at runtime (S6), which
is a dynamic design element that can be audited using logs
of data type registrations by components. By registering data
types, engineer #1 aims to reduce compliance costs if the law
changes by introducing a general design solution (S8), which
is a principal goal of Legal Accountability.

In the right column, engineer #1 also proposes a design
concept for purge (S6), which undergoes a series of reciprocal
challenges by engineers #2 and #1 (S7-S9), and a justification
by the legal analyst (S10). To support legal validity, the
decision to register data by category, and decentralize purge,
is motivated by considering design alternatives (S7 versus S8)
and design constraints (S9 is a constraint that justifies S7),
as well as additional legal rules (S10). The outcome of the
hypothetical discussion would be a new feature (the retention
service) plus changes to existing components, as noted on
the right side of Figure 1. Legal validity rests on the totality
of these questions and responses in support of the law. This
could be realized as Kaur suggests by identifying the kinds
of statements, their relations to other statement types, and so
on, as an evolving, coordinated, collaboratively constructed
decision by the legal analyst and software engineer.

TABLE I
HYPOTHETICAL, THREADED DESIGN DISCUSSION BETWEEN LEGAL ANALYSTS AND SOFTWARE ENGINEERS

D. Auditability

Auditability holds, if the design and runtime artifacts pro-
vide evidence of when every obligation is discharged and,
of when duties are discharged in response to stakeholders
who exercise their rights and the business is a counterparty
to those rights. Auditability serves internal business auditors,
contracted third-party auditors, or those who have the legal
right to challenge or request evidence of an accounting,
including subpoena powers. Traceability can be used to aid
auditability by linking legal rules to target software artifacts
that implement those requirements. However, auditability con-
cerns the type and quality of the target artifacts as they
serve to demonstrate that obligations and duties have been
properly discharged. We distinguish between direct evidence
of legal requirements to document design decisions, and
indirect evidence that covers the detailed implementation of the
decision, and evidence of static representations of software at
design-time, such as documented requirements, architecture,
test cases and formal and informal models, versus dynamic
representations of software at runtime, such as log data, to
show the context of the design choice.

Legal texts and guidelines can be explicit about what is
auditable, such as the HIPAA Privacy Rule, which includes
an obligation in §164.514(b)(1)(ii) to document the decision
of an expert when applying statistical methods to de-identify
protected health information. If a statistics-trained software
engineer were to propose using differential privacy [27] to de-

identify health data, then this decision must be documented
under the Rule. What is less clear from the Rule, however,
is the extent to which the legal analyst and software engineer
need to document the implementation of the decision. The
guidance raises questions that companies should answer, such
as [52]: who qualifies as an expert, how long is an expert
decision valid for, and how does an expert assess the risk of a
decision? The guidance does not cover how to document the
software-based evidence created by companies who discharge
the obligation. Does the software need to record the code-level
implementation, or each event when data is de-identified, or
which version of a method was applied, should the expert
propose multiple methods, or revise a method later?

In addition to explicit documentation requirements found
in legal texts, companies may choose to document decisions
because of exigencies not covered by the text. For example, the
California Consumer Privacy Act (CCPA) does not expressly
require that a company obtain consent from a website user
before placing cookies on their browser. Under the CCPA,
certain obligations, duties, and rights are triggered when a
business engages in a “sale” of personal information, which
the CCPA defines as the disclosure of or otherwise making
available personal information “for monetary or other valuable
consideration.” This definition applies to the exchange for
value of all consumer information, including sharing personal
data captured by cookies and other tracking technologies with
third parties. However, a business does not “sell” personal

information when the consumer directs the business to “(i)
intentionally disclose personal information or (ii) intentionally
interact with one or more third parties.” Thus in order to
minimize risk when permitting other parties to deploy cookies,
a website may avoid the triggering of the attendant obligations,
duties, and rights by obtaining and documenting a user’s
consent as evidence that the consumer directed the business
to “intentionally disclose personal information.”

In addition, other parties may be granted the right to request
an audit. Organizations may implement their own policies
for auditing, or contract with third parties, and laws may
grant outside parties such rights. The GDPR, Article 15, for
example, grants people described by data, called data subjects,
the right to obtain a copy of their personal data that is being
processed by software. While a data subject request could
trigger a flurry of activity by system administrators to search
databases for relevant data, a system designed to be Legally
Accountable would reduce the effort and time to generate this
copy by design. In all circumstances, auditability should be
driven by who has the right to request an audit, and what
should narrowly be reported within the scope of a legally
required audit.

Design techniques for “forensic-ready” software, which
explicitly preserves evidence to aid in digital forensic inves-
tigations, could support auditability [1], [89]. This includes
methods that use harm-based, risk metrics to prioritize which
requirements to audit as potential sources of evidence [26],
and techniques to guide developers on deciding where to log
and what to log [96]. While these approaches were initially
developed in the context of security incidents, they may
generalize to violations of law.

E. Continuity

Continuity holds, if the design ensures to the greatest extent
possible that no gaps arise in compliance, and when gaps do
arise due to environmental or technical issues, then designers
can show that any issues are commercially reasonable. Conti-
nuity is challenged when technology innovation outpaces the
law, introducing harms unforeseen by regulators that would
be cause for updating the law. In this respect, designers who
anticipate and achieve the legal goal, despite the absence of
a specific legal rule, can increase the robustness of continuity
against future changes in law. Continuity is further challenged
when the legal context changes, such as the introduction of
new laws and amendments to old laws, new judicial opinions
that change how existing law should be interpreted, or when
regulators update their guidelines. Under these circumstances,
the legal analyst and software engineer must review an existing
design and, using traceability, identify the requirements, design
and implementation that must be re-assessed.

While laws and guidelines do change, many prominent laws
do so infrequently. For example, the HIPAA was enacted in
1996, and one regulatory interpretation of the HIPAA, called
the Privacy Rule, was finalized in 1999. The Privacy Rule
was then modified in 2002, 2013, 2014 and 2016. In the
U.S., the public is invited to comment on proposed changes,

which occurred prior to each of these modifications. While the
HIPAA legislative act was not amended between 1996-2021,
the supporting regulation was amended. Similar examples can
be found of changing laws and guidelines, such as DO-178B,
which is the de facto industry standard covering flight control
software to comply with 14 CFR 21.601-621 and which was
introduced in 1992 and updated in 2011.

Continuity is also challenged when software is modified
statically or dynamically, and when software is distributed
across development teams. Designs that are resilient to un-
specified changes reduce the risk of breaking continuity and of
maintaining Legal Accountability. Technology innovation can
outpace law, in which case revealing and achieving the reg-
ulatory goal can increase robustness against non-compliance
when software changes [12]. To illustrate, consider a business
objective to deliver flexible online learning environments to
children in K-8 schools. The U.S. Children’s Online Privacy
Protection Act (COPPA) Rule requires this business to obtain
verifiable parental consent before collecting information from
children under 13. Figure 2 presents a hypothetical software
architecture that consists of a consent module for standardizing
consent functions across services, an educational platform that
coordinates services, and one or more learning module plugins
that allow the platform to be modified post-deployment with
minimal cost. The platform was designed using the Broker
architectural design pattern, which supports modifiability by
dispatching service requests to responsible modules that can
be changed at runtime. Notably, learning module #2 is a third-
party plugin, thus platform designers must account for how
third-parties will comply with COPPA.

Figure 2 presents four legal obligations about obtaining
consent under COPPA, each numbered by the legal paragraph
containing those obligations. To integrate compliance into
an agile process, software engineers can write a user story,
“As a parent, I will first consent to the collection of my
child’s personal information,” and attach acceptance tests to
the story, such as ensuring that the consent page includes an
unchecked option to consent to third-party disclosures. The
COPPA Rule describes requirements in §312.5(b) concerning
permitted methods to obtain consent that may be included with
this story as legally required story sub-tasks or acceptance
tests. When consent is revoked, children’s data must be deleted
from any devices where that data is stored.

The “flexible learning environment” business objective is
interpreted by engineers as a plugin-based architecture that
supports dynamically loaded learning modules. This objec-
tive drives modifiability as a high-priority software quality
attribute. Legal Accountability under COPPA, however, im-
poses two specific constraints on the architecture: (i) prior to
offering parents access to third-party plugins, parents must first
specifically consent to these plugins under §312.5(a)(2); and
(ii) whenever a plugin is re-loaded due to a material change
in plugin design, parental consent must be re-obtained for this
change under §312.5(a)(1). In addition to these constraints,
Legal Accountability requires legal analysts and software
engineers to be able to communicate how this architecture

implements these constraints, and if challenged by a regulator,
they must show evidence that non-compliance events have not
occurred at runtime.

COPPA 312.3(b): Obtain
parental consent prior to any
collection, use and/or
disclosure

COPPA 312.8(b): Only
release children's personal
information to third parties
who are capable of
protecting such information

COPPA 312.5(a)(2): Give parents
option to consent without consenting
to disclosure to third parties

Learning
Module #2

Learning
Module #1

COPPA 312.5(a)(1): Obtain parental consent to any
material change in collection, use and/or disclosure

Educational
Platform

Third Party
Software

Consent
Module

Communication between modules
Legal requirement traced to responsible module

Legal requirement that refines another legal requirement

Fig. 2. Legal Continuity and Platform Modifiability

In addition to requiring software to be easily auditable,
Legal Accountability requires software to remain accountable,
even when other design pressures, such as ease of modifica-
tion, are prioritized. By introducing Legal Accountability as a
software quality, these pressures can be assessed in the context
of their impact on compliance at design-time.

V. RESEARCH CHALLENGES

In this section, we identify a cross-section of research areas
that require investigation to realize Legal Accountability.

A. Cross-functional Teaming

• Challenge #1: How to integrate legal and engineering
experts in agile, cross-functional teams?
Design reviews can be used to establish legal validity by

drawing upon legal and software engineering expertise in
a combined, cross-functional team. Cross-functional teams
are known to face considerable knowledge transfer chal-
lenges [74], which can be addressed by improving the cod-
ification of knowledge to support easy transfer [63], and
by recognizing the boundaries of transfer due to expertise
dissimilarity [64] and transactive memory [63]. Creativity in
cross-functional teams increases when teams are encouraged to
take risks [100], which can create tension with the risk aversive
culture of law. A leading cause of failure in cross-functional
teams is siloed team members and lack of adherence to
shared artifacts, such as design specifications [112]. To support
legal accountability, new methods and tools must improve
knowledge transfer and enable bi-directional co-design of
specifications early in the development process.

Agile methods are among the most commonly used software
processes [71], and developers have reported a preference
for defined compliance processes that prioritize software re-
lease [60]. While cross-functional teams exist in software
development, they may be uncommon, even in safety-critical

systems [76]. The emphasis on communication over documen-
tation in Agile does not always lead to better functioning, inter-
disciplinary teams, especially when design rationale is undoc-
umented or changing [48]. However, lightweight methods that
support knowledge transfer between legal- and engineering-
trained team members could be a promising area of re-
quirements research. Moreover, integrating these methods into
existing tools for continuous integration, continuous delivery
(CI/CD) would further meet the challenge of aligning Legal
Accountability with modern software release and maintenance
activities.

B. Dialogical and Dialectical Reasoning

• Challenge #2: How to achieve design acceptance with
cross-disciplinary reasoning?
Aligning the legal and design context to support Legal

Accountability requires an extended exchange of ideas, which
is dialogical, or comprised of multiple logics - the logic of
law, and the logic of software design [22]. Speakers in a
dialogue can presuppose certain ideas are known to the other
party as background information, called common ground [20],
[107]. Divergences from what is mutually known, including:
assumptions, or what a speaker assumes is part of common
ground and thus knowledge that is accessible to the other
speaker; presumptions, or what a speaker believes is mutually
believed by both parties; and pretenses, or beliefs that are false
or ambitious in light of facts [107]. When the logic of law and
software engineering conflict with one another, the exchange
shifts to dialectical reasoning, in which arguments, points and
counterpoints are constructed [22]. One cannot simply take the
union of common grounds in law and software engineering
to support design discussions and establish legal validity.
Legal analysts and software engineers must instead construct
dialogical “bridges” with intentional scaffolding so that each
counterparty can surface and communicate assumptions, evalu-
ate presumptions and avoid pretenses. Technical design details,
which are taken for granted, can limit a legal analyst’s access
to potential public harms and risk mitigations. Without such
bridges, legal risk will influence how legal analysts sustain
and amplify their own pretenses in ways that engineers fail
to comprehend, wherein one party – the legal analyst who
seeks to minimize risk – is left to assume monologic control
of prohibitions over design choices.

In requirements engineering, past research to understand
tacit knowledge [35] and common ground [109] provide direc-
tion, while Legal Accountability introduces new challenges:
(1) how to support bi-directional communication, wherein
legal analysts co-design with software engineers; and (2) how
to interrelate the specialized forms of reasoning in which
legal analysts and software engineers are separately trained.
Notations and models have been proposed for documenting
requirements during early design discourse [25], [90], and
goal models in particular have been adapted to model legal
requirements [39], yet to our knowledge no complementary
models for documenting legal reasoning during discourse have
been proposed in software engineering.

C. Education and Expertise

• Challenge #3: How to train engineers and lawyers in
cross-functional areas?
Successful design reviews depend on participating software

engineers and lawyers having a minimal, baseline understand-
ing of each other’s domain. For example, it is important that
software engineers have a basic understanding of the legal
context, the life cycle of law, and its potential scope from ju-
risdiction to jurisdiction. Software engineers must understand
that law and regulation is frequently crafted to be purposefully
vague or ambiguous about—or silent on—key operative fea-
tures, such that interpretation in light of the full legal context is
required to distill the law’s full effect. Legal analysts must have
a basic understanding of computer organization, distributed
systems, and the software development life cycle, in particular,
how requirements relate to architecture and quality assurance,
and how these relationships are used perform validation and
verification. These prerequisites raise questions about the
breadth of knowledge, expertise, and education sufficient for
stakeholders to effectuate Legal Accountability in practice.

D. Legal Ambiguity and Design Uncertainty

• Challenge #4: How to synthesize requirements from
purposeful ambiguity and overall legal intent?

• Challenge #5: How to assure system behavior in unspec-
ified components?
Requirements engineering research in ambiguity is exten-

sive. The general approach is to acquire syntactic and semantic
mappings from potentially ambiguous text to possible deno-
tations [34]. While the challenges of identifying ambiguous
terms in legal texts is important and has received critical
attention and tool support [29], [79], [94], Legal Account-
ability draws attention to other research questions about when
ambiguity is purposeful to provide design flexibility, and in
what form a design is best to comply. For example, when
determining which software engineering decisions are legally
reasonable. This is an area of frustratingly high uncertainty
for software engineers.

U.S. law frequently relies on “reasonableness” as an ap-
propriate standard of conduct. For example, the U.S. FTC
has brought enforcement action against companies who fail to
provide reasonable data security. While the FTC has recently
clarified “reasonable security” by enumerating specific safe-
guards in enforcement orders [13], it has yet to provide a firm
definition. Companies typically formulate their own definitions
based on industry norms and standards and what the FTC
finds to be unreasonable. New research to define reasonable
standards should consider: how a solution achieves broader
legal goals, the level of expertise of the designer, available
marketplace solutions and their technical limitations, the cost
of a solution, and how reasonable standards change over time.

Laws that increase transparency shed new light on design
uncertainty, which concerns situations where the law is clear,
but whether and how the design complies with the law is
unclear. This has generally been observed as a challenge to

technical professionals [43] and software engineers [78] who
analyze one or two requirements. In more advanced cases,
distributed systems involving third-party components, which
are typically protected by intellectual property law or as trade
secrets, and the need for explainability in machine learn-
ing [18], [19], [66] introduce design ambiguity. Computational
techniques to validate whether third-party components, designs
and operations conform to first-party requirements are needed.

E. Risk Analysis and Harm

• Challenge #6: How to model and estimate risk for
abstract and prospective harms?
Legal and engineering systems both assess and manage risk

while reducing harms, although, sources of risk and what
constitutes harm are not always in alignment. In law, regu-
latory risk concerns the “financial loss exposure arising from
the [likelihood] that regulatory agencies will make changes
in the current rules, or impose new rules,” and regulatory
compliance risk concerns exposure to losses “when business
rules are not followed” [33]. In software engineering, risk is
defined as the “combination of the probability of an abnormal
event or failure and the consequence(s) of that event or failure
to a system’s components, operators, users, or environment”
(ISO/IEC 24765:2010). Abnormal events may include the
“inability of a product to perform a required function or its
inability to perform within previously specified limits,” called
failures, or “a situation with a potential for human injury,
damage to health, property, or the environment,” called harms
(ISO/IEC 24765:2010).

Requirements engineering research examines failures and
hazards, or the “source of potential harm” (ISO/IEC
24765:2010). This includes goal-modeling methods to iden-
tify failures and hazards, called obstacles, and their coun-
termeasures to reduce harm [3], [70]. Enhanced goal mod-
els can account for external sources of uncertainty, or risk
likelihood, and be used to identify the most problematic,
low-level goals [17]. Security requirements methods, e.g.,
SQUARE [80], include steps to identify misuse [102] and
abuse cases [81] that document security-related hazards, before
performing risk assessments to prioritize hazards based on
likelihood and severity. Security risk covers confidentiality,
integrity and availability [47], whereas privacy risk concerns
privacy harms as they are experienced by data subjects [6].

Techniques have been proposed in safety-critical systems
to address safety, risk and hazard analysis [116]. Method im-
provements to reduce harms by safety-critical systems include
reducing communication gaps in cross-functional teams [75].
Certification processes to demonstrate compliance with stan-
dards often require evidence collection, however, some pro-
cesses have been criticized for yielding “statements on paper,”
while actual requirements are embedded as artifact implemen-
tations and known only to safety engineers [76].

While prior research focuses mainly on failures and hazards,
more work is needed to understand harms. Because law holds
companies accountable to definitions of harm, methods that
link requirements to harm are likely to inform lawmakers on

better ways to legislate, and inform regulators on better ways
to interpret law. This is increasingly true when software affects
abstract harms. In law, harm typically encompasses physical
harm to body or property, harm to one’s reputation, emotional
harm and harm due to violations of conferred rights. Recently,
software has been designed to manipulate emotions [67],
which shows how requirements can creep into more abstract
harms, like emotions [93]. In the data processing, harm is often
defined in terms of future uses of data, including potential for
discrimination, manipulation, inadequate notice, lost control,
and chilling effects. Such uses often produce relatively small
effects such as frustration, aggravation, anxiety, inconvenience
that are nevertheless experienced by a large number of peo-
ple [23]. Courts struggle to recognize certain data processing
harms2, yet these harms inform data processing regulation.
Therefore, new research on personal [91] amd human val-
ues [45], [82], and their relation to socio-political beliefs [114]
can inform how regulators define and regulate harm in law.

VI. LIMITATIONS

This perspective is limited to data processing law. Detailed
and mature methods and tools for legal compliance exist in
other domains, such as aviation, automotive and medicine.
We believe this is due in part in the U.S. to several reasons:
there is a longer history of regulating safety in these domains;
there are established and autonomous U.S. regulatory agencies
with almost exclusive regulatory authority in these domains;
and there is a clearer definition of harm in these domains,
e.g., bodily harm, mental harm and financial harm. While
much can be learned from these domains to support legal
compliance in data processing, these differences also limit the
effectiveness of knowledge transfer. The diversity and speed
of innovation in data processing limits what regulators can
accomplish through rulemaking, and thus explains why data
processing law includes purposeful ambiguity. This difference
requires software designers to bear more of the burden of
specifying their own processes in the context of their software.
Thus, we believe data processing law presents a starting point
where new methods and tools can arise with a better fit to less
prescriptive design contexts, while borrowing best practices
from domains with more extensive regulation.

Second, the perspective is limited to companies operating
in the United States. While companies who operate within
the U.S. and outside the U.S. also need to comply with laws
in non-U.S. jurisdictions, such as the GDPR, the authors’
expertise is primarily with U.S. law and the U.S. legal system.
That said, we believe there can be similarity across legal
systems and that this perspective could be a starting point
for researchers in non-U.S. jurisdictions to critique, extend
and propose alternatives to this perspective to accommodate a
broader vision of Legal Accountability. Concerns that should
be considered across jurisdictions that primarily affect the
construction and interpretation of the legal context include: (1)
the extent of digitization of laws and court records, e.g., made

2TransUnion LLC v. Ramirez, 594 U.S. (2021)

available through e-justice systems [72], [117], which allows
legal analysts and software engineers to more easily itemize
and trace legal requirements, legal precedents, etc. into a
Legal Accountability framework. (2) Legal systems, including
courts, adjudicate legal claims using different procedures and
background. Common law systems that rely on precedent,
or a hierarchical court system, to reason about standing or
violations of law suggest a different interpretation of the legal
context by analysts and engineers than a civil law system,
where each case is reviewed independently against the statute
or regulation. (3) Finally, who is charged with enforcing the
law, what authority that agency has been granted, and what
resources the have available to perform enforcement can affect
how legal analysts prioritize legal risk.

VII. CONCLUSION

As software increasingly pervades nearly every aspect of
daily life, software engineers need new tools to reduce the
compliance burden and ensure that laws and policies are inte-
grated into design, early. Specific challenges to this integration
include the cultural and expertise misalignment between law
and engineering. In this paper, we propose a new software
quality, called Legal Accountability, which aims to change
compliance from an oversight activity into a principal design
activity. Legal Accountability is comprised of at least five
properties, including legal traceability, completeness, validity,
auditability and continuity. We motivate new and old cross-
cutting research challenges that are introduced by this per-
spective by reviewing prior work in requirements and software
engineering. Three implications of this proposal include that
legal analysts and software engineers must learn new ways
to collaborate in their decision making using shared artifacts
to build shared understanding, which requires advances in
cross-functional teaming; that new argumentation structures
are needed to align and document legal and engineering
reasoning; and that advances in curriculum development are
needed to prepare law and software engineering students to
design accountable systems.

REFERENCES

[1] D. Alrajeh, L. Pasquale, B. Nuseibeh, “On evidence preservation re-
quirements for forensic-ready systems,” 11th Jnt. Mtg. Fnd. Soft. Engr.,
2017 pp. 559–569.

[2] D. J. Anderson, Kanban: successful evolutionary change for your
technology business, Blue Hole Press, 2010.

[3] Y. Asnar, P. Giorgini, J. Mylopoulos, “Goal-driven risk assessment in
requirements engineering.” Req’ts Engr. 16: 101–116, 2011.

[4] A.D. Austin, “Is the casebook method obsolete?” 6 Wm. & Mary L.
Rev. 157, 157, 160 (1965)

[5] L. Bass, P. Clements, R. Kazman. Software Architecture in Practice, 3rd
ed. Addison-Wesley, 2015.

[6] J. Bhatia, T. D. Breaux. “Empirical measurement of perceived privacy
risk.” ACM Trans. Comp.-Hum. Inter. 25(6): Article 34 (2018)

[7] J. Bhatia, T. D. Breaux, J. R. Reidenberg and T. B. Norton. “A theory
of vagueness and privacy risk perception,” IEEE 24th Int’l Req’ts Engr.
Conf., 2016, pp. 26-35.

[8] E. Bjarnason, P. Runeson, M. Borg, M. Unterkalmsteiner, E. Engström,
B. Regnell, G. Sabaliauskaite, A. Loconsole, T. Gorschek, R. Feldt
“Challenges and practices in aligning requirements with verification
and validation: a case study of six companies.” Emp. Soft. Engr. 19:
1809–1855 (2014).

[9] G. Boella, L. Humphreys, R. Muthuri, P. Rossi and L. van der Torre. “A
critical analysis of legal requirements engineering from the perspective
of legal practice,” IEEE 7th Int’l W’shp Req’ts Engr. & Law, 2014, pp.
14-21.

[10] B. W. Boehm, “A spiral model of software development and enhance-
ment,” ACM Soft. Engr. Notes, 11(4): 14-24 (1988).

[11] B. Boehm, R. Turner. Balancing Agility and Discipline: A Guide for the
Perplexed, Addison-Wesley, 2003.

[12] T.D. Breaux, A.I. Antón, K.Boucher, M. Dorfman. “Legal requirements,
compliance and practice: an industry case study in accessibility.” 16th
IEEE Int’l Req’ts Engr. Conf., 2008, pp. 43-52.

[13] T. D. Breaux, D. L. Baumer, “Legally ‘reasonable’ security require-
ments: A 10-year FTC retrospective,” Comp. & Sec., 30(4): 178-193,
2011.

[14] T.D. Breaux, D.G. Gordon. “Regulatory requirements traceability and
analysis using semi-formal specifications.” Req’ts Engr.: Fnd. Soft. Qual.
LNCS 7830 (2013).

[15] T. D. Breaux, D. G. Gordon, N. Papanikolaou and S. Pearson, “Mapping
legal requirements to IT controls,” 6th Int’l W’shp Req’rs Engr. & Law,
2013, pp. 11-20.

[16] T. D. Breaux, M. W. Vail and A. I. Anton, “Towards regulatory
compliance: extracting rights and obligations to align requirements with
regulations,” 14th IEEE Int’l Req’ts Engr. Conf., 2006, pp. 49-58.

[17] A. Cailliau, A. van Lamsweerde, “Handling knowledge uncertainty
in risk-based requirements engineering,” IEEE 23rd Int’l Req’ts Engr.
Conf., 2015, pp. 106-115.

[18] L. Chazette, W. Brunotte, T. Speith, “Exploring explainability: a defini-
tion, a model, and a knowledge catalogue,” IEEE 29th Int’l Req’ts Engr.
Conf., 2021, pp. 197-208.

[19] L. Chazette, K. Schneider, “Explainability as a non-functional require-
ment: challenges and recommendations.” Req’ts Engr. 25: 493–514
(2020)

[20] H.H. Clark. Using Language. Cambridge: Cambridge University Press.
[21] J. Cleland-Huang, A. Czauderna, M. Gibiec, J. Emenecker. “A machine

learning approach for tracing regulatory codes to product specific re-
quirements.” 32nd ACM/IEEE Int’l Conf. Soft. Engr., 2010, pp. 155–164.

[22] R.T. Craig, “Communication theory as a field,” Comm. Theory, 9(2):
119–161 (1999).

[23] D.K. Citron, D.J. Solove, “Privacy harms,” 102 B.U. L. Rev. (2022)
(forthcoming)

[24] M. Daneva, A. Herrmann, L. Buglione, “Coping with quality require-
ments in large, contract-based projects.” IEEE Soft., 32(6): 84-91, 2015.

[25] A. Dardenne, S. Fickas, A. van Lamsweerde, “Goal–directed require-
ments acquisition,” Sci. Comp. Prog., 20:3-50 (1993).

[26] L. Daubner, R. Matulevičius “Risk-oriented design approach for
forensic-ready software systems,” 16th Int’l Conf. on Avail., Rel. & Sec.,
48, (2021)

[27] C. Dwork. “Differential privacy: a survey of results.” Int’l Conf. Theory
& Appl. Models Comp., 2008.

[28] A.C. Edmondson, J-F. Harvey, J-F. “Cross-boundary teaming for inno-
vation: Integrating research on teams and knowledge in organizations,”
Human Res. Mgmt. Rev. 28: 347-360 (2018).

[29] S. Ezzini, S. Abualhaija, C. Arora, M. Sabetzadeh and L. C. Briand,
“Using domain-specific corpora for improved handling of ambiguity in
requirements,” IEEE/ACM 43rd Int’l Conf. Soft. Engr., 2021, pp. 1485-
1497.

[30] E.A. Farnsworth, An Introduction to the Legal System of the United
States, Steve Sheppard ed., 4th ed. 2019.

[31] R.M. Fischl, J.R. Paul. Getting to maybe: how to excel on law school
exams. Carolina Acad. Press, 1999.

[32] K. Forsberg, H. Mooz. “The relationship of system engineering to the
project cycle,” The 12th INTERNET World Cong. Proj. Mgmt., 1991.

[33] B.A. Garner (ed), Black’s Law Dictionary, 11th ed., 2019.
[34] V. Gervasi, A. Ferrari, D. Zowghi, P. Spoletini. “Ambiguity in require-

ments engineering: towards a unifying framework,” Soft. Engr. to Form.
Mthd. & Tools, & Back, 2019, pp 191-210.

[35] V. Gervasi, R. Gacitua, M. Rouncefield, P. Sawyer, L. Kof, L. Ma, P.
Piwek, A. de Roeck, A. Willis, H. Yang, B. Nuseibeh. “Unpacking tacit
knowledge for requirements engineering,” Mng’ing Req’rs Knowl., 2013,
pp 23-47.

[36] S. Ghanavati, D. Amyot and L. Peyton, “Comparative analysis between
document-based and model-based compliance management approaches,”
IEEE W’shp Req’ts Engr. & Law, 2008, pp. 35-39.

[37] S. Ghanavati, D. Amyot and L. Peyton, “Compliance analysis based
on a goal-oriented requirement language evaluation methodology,” 17th
IEEE Int’l Req’ts Engr. Conf., 2009, pp. 133-142.

[38] S. Ghanavati, A. Rifaut, E. Dubois and D. Amyot, “Goal-oriented
compliance with multiple regulations,” IEEE 22nd Int’l Req’ts Engr.
Conf., 2014, pp. 73-82.

[39] S. Ghanavati, D. Amyot, A. Rifaut, “Legal goal-oriented require-
ment language (legal GRL) for modeling regulations.” 6th Int’l W’shp
Mod’ing Soft. Engr., 2014, pp. 1-6.

[40] M. Glinz, “On non-functional requirements,” 15th IEEE Int’l Req’ts
Engr. Conf., 2007, pp. 21-26.

[41] D. G. Gordon and T. D. Breaux, “Reconciling multi-jurisdictional legal
requirements: A case study in requirements water marking,” 20th IEEE
Int’l Req’ts Engr. Conf., 2012, pp. 91-100.

[42] D. G. Gordon and T. D. Breaux, “Assessing regulatory change through
legal requirements coverage modeling,” 21st IEEE Int’l Req’ts Engr.
Conf., 2013, pp. 145-154.

[43] D. G. Gordon and T. D. Breaux, “The role of legal expertise in
interpretation of legal requirements and definitions,” IEEE 22nd Int’l
Req’ts Engr. Conf., 2014, pp. 273-282.

[44] J. Guo, J. Cheng and J. Cleland-Huang, “Semantically enhanced soft-
ware traceability using deep learning techniques,” IEEE/ACM 39th Int’l
Conf. Soft. Engr., 2017, pp. 3-14.

[45] M. Harbers, C. Detweiler, M.A. Neerincx. “Embedding stakeholder
values in the requirements engineering,” Req’ts Engr.: Fnd. Soft. Qual.
LNCS 9013 (2015).

[46] C.B. Haley, J.D. Moffett, R. Laney, B. Nuseibeh. “Arguing security:
validating security requirements using structured argumentation,” 3rd
Symp. Req’ts Engr. Info. Sec., 2005.

[47] C. Haley, R. Laney, J. Moffett and B. Nuseibeh, “Security requirements
engineering: a framework for representation and analysis,” IEEE Trans.
Soft. Engr., 34(1): 133-153 (2008).

[48] A. Hess, J. Tamanini and S. Storck, “From screenplays to podcasts -
new perspectives on improving requirements communication in interdis-
ciplinary teams,” IEEE 29th Int’l Req’ts Engr. Conf., 2021, pp. 162-172.

[49] W.N. Hohfeld, “Some fundamental legal conceptions as applied in
judicial reasoning.” Yale L. J. 23(1):16–59 (1913).

[50] X. Huang, J. J. Po-An Hsieh, W. He. “Expertise dissimilarity and
creativity: the contingent roles of tacit and explicit knowledge sharing,”
J. Appl. Psych. 99(5): 816-30 (2014).

[51] Health and Human Services, U.S. Department of. “Guidance for the
content of premarket submissions for software contained in medical
devices,” May 11, 2005.

[52] Health and Human Services, U.S. Department of. “Guidance regarding
methods for de-identification of protected health information in accor-
dance with the health insurance portability and accountability act privacy
rule,” Nov. 26, 2012.

[53] S. Ingolfo, A. Siena, J. Mylopoulos, A. Susi, A. Perini, “Arguing
regulatory compliance of software requirements,” Data & Know. Engr.
87: 279-296 (2013).

[54] S. Ingolfo, I. Jureta, A. Siena, A. Perini, A. Susi A. “Nòmos 3: legal
compliance of roles and requirements.” In: Yu E., Dobbie G., Jarke M.,
Purao S. (eds) Conceptual Modeling. LNCS, vol 8824 (2014).

[55] M. Jarke, K. Pohl, S. Jacobs, J. Bubenko, P. Assenova, P. Holm,
G. Spanoudakis. “Requirements engineering: an integrated view of
representation, process, and domain.” Euro. Soft. Engr. Conf., 1993, pp.
100-114.

[56] A. J. I. Jones, M. Sergot. “Deontic logic in the representation of law:
towards a methodology.” Art. Intel. & Law 1: 45-64 (1992).

[57] I. Jureta, J. Mylopoulos and S. Faulkner. “Analysis of multi-party
agreement in requirements validation,” IEEE Int’l Conf. Req’ts Engr.,
2009, pp. 57-66.

[58] G. Kaur. “Analyzing email archives to better understand legal require-
ments,” 2nd IEEE Int’l W’shp Req’ts Engr. & Law, 2009, pp. 21-26.

[59] G.M. Kanchev, P.K. Murukannaiah, A.K. Chopra, P. Sawyer, P. “Canary:
extracting requirements-related information from online discussions,”
IEEE 25th Int’l Req’ts Engr. Conf., 2017, pp. 31-40.

[60] E. Kempe and A. Massey, “Perspectives on regulatory compliance in
software engineering,” IEEE 29th Int’l Req’ts Engr. Conf., 2021, pp.
46-57.

[61] L.M. Khan, N.J. Phillips, R. Chopra, R.K. Slaughter, C.S. Wilson, C.
S. “FTC report to congress on privacy and security,” Sep. 13, 2021.

[62] B. Kitchenham, S. Charters. “Guidelines for performing systematic
literature reviews in software engineering,” EBSE Tech. Rep. EBSE-
2007-01, 2007.

[63] J. Kotlarsky, B. van den Hooff, L. Houtman. “Are we on the same page?
Knowledge boundaries and transactive memory system development in
cross-functional teams,” Comm. Res., 42(3): 319-344 (2012).

[64] J. Kotlarsky, H. Scarbrough, I. Oshri. “Coordinating expertise across
knowledge boundaries in offshore-outsourcing projects: the role of
codification.” MIS Quarterly 38(2), 607-A5 (2014).

[65] C.W. Kneupper, “Teaching argument: an introduction to the Toulmin
model.” College Comp. & Comm., 29(3): 237–241 (1978).

[66] M. A. Köhl, K. Baum, M. Langer, D. Oster, T. Speith and D. Bohlender,
“Explainability as a non-functional requirement,” IEEE 27th Int’l Req’ts
Engr. Conf., 2019, pp. 363-368.

[67] A.D.I. Kramer, Jamie E. Guillory, and Jeffrey T. Hancock, “Experi-
mental evidence of massive-scale emotional contagion through social
networks.” Proc. Nat’l Aca. Sci., 111 (24): 8788-8790 (2014).

[68] J.A Kroll, J. Huery, S. Barocas, E.W. Felton, J.R. Reidenberg, D.G.
Robinson, H. Yu. “Accountability algorithms.” 165 U. Pa. L. Rev. 633
(2017).

[69] W. Kunz, H. Rittel. “Issues as elements of information systems.” Wk’ing
Paper No. 131, Inst. Urban & Reg. Dev., Univ. Cal., Berkeley, 1970.

[70] A. van Lamsweerde, E. Letier, “Handling obstacles in goal-oriented
requirements engineering,” IEEE Trans. Soft. Engr., 26(10): 978-1005
(2000).

[71] G. Lucassen, F. Dalpiaz, J. Martijin, E.M. van der Werf. “The use and
effectiveness of user stories in practice.” Int’l Wk’ing Conf. Req’ts Engr.:
Fnd. Soft. Qual., 2016.

[72] G. Lupo, J. Bailey. “Designing and implementing e-justice systems:
some lessons learned from EU and Canadian examples.” Laws 3: 353-
387 (2014).

[73] C. Ma. “Self-regulation versus government regulation: an externality
view,” J. Req. Econ. 58:166-183 (2020).

[74] A. Majchrzak, P.H.B. More, S. Faraj. “Transcending knowledge differ-
ences in cross-functional teams.” Org. Sci. 23(4): 951-970 (2012).

[75] L. E. G. Martins, T. Gorschek, “Requirements engineering for safety-
critical systems: overview and challenges.” IEEE Soft., 34(4): 49-57
(2017).

[76] L. E. G. Martins, T. Gorschek, “Requirements engineering for safety-
critical systems: an interview study with industry practitioners,” IEEE
Trans. Soft. Engr., 46(4): 346-361 (2020)

[77] A. K. Massey, P. N. Otto and A. I. Antón, “Prioritizing legal require-
ments,” 2nd Int’l W’shp Req’ts Engr. & Law, 2009, pp. 27-32.

[78] A. K. Massey, P. N. Otto and A. I. Antón, “Evaluating legal imple-
mentation readiness decision-making,” IEEE Trans. Soft. Engr., 41(6):
545-564 (2015)

[79] A. K. Massey, R. L. Rutledge, A. I. Antón and P. P. Swire, “Identifying
and classifying ambiguity for regulatory requirements,” IEEE 22nd Int’l
Req’ts Engr. Conf., 2014, pp. 83-92.

[80] N. R. Mead, T. Stehney. “Security quality requirements engineering
(SQUARE) methodology,” ACM Soft. Engr. Notes 30(4): 1–7 (2005)

[81] J. McDermott, C. Fox, “Using abuse case models for security require-
ments analysis.” 15th Annual Comp. Sec. Appl. Conf., 1999.

[82] D. Mougouei, H. Perera, W. Hussain, R. Shams, J. Whittle, “Opera-
tionalizing human values in software: a research roadmap,” 26th ACM
Symp. Fnd. Soft. Engr., 2018, pp. 780–784.

[83] J. Mylopoulos, L. Chung, B. Nixon. “Representing and using nonfunc-
tional requirements: a process-oriented approach,” IEEE Trans. Soft.
Engr. 18(6): 483-497 (1992).

[84] J. Mylopoulos, L. Chung, E. Yu. “From object-oriented to goal-oriented
requirements analysis,” Comm. ACM 42(1): 31-37 (1999).

[85] J. Mylopoulos, L. Chung, S. Liao, H. Wang and E. Yu, “Exploring
alternatives during requirements analysis,” IEEE Soft. 18(1): 92-96
(2001).

[86] N. Zeni, N. Kiyavitskaya, L. Mich, J. R. Cordy, and J. Mylopoulos,
“GaiusT: supporting the extraction of rights and obligations for regula-
tory compliance,” Req’ts Engr. 20(1): 1–22 (2015).

[87] C. Ncube and S. L. Lim, “On systems of systems engineering: a
requirements engineering perspective and research agenda,” IEEE 26th
Int’l Req’ts Engr. Conf., 2018, pp. 112-123.

[88] P. N. Otto and A. I. Anton, “Addressing legal requirements in require-
ments engineering,” 15th IEEE Int’l Req’ts Engr. Conf., 2007, pp. 5-14.

[89] L. Pasquale, D. Alrajeh, C. Peersman, T. Tun, B. Nuseibeh and A.
Rashid, “Towards forensic-ready software systems,” IEEE/ACM 40th
Int’l Conf. Soft. Engr.: New Ideas & Emer. Tech. Res., 2018, pp. 9-12.

[90] C. Potts, K. Takahashi, A.I. Antón. “Inquiry–based requirements analy-
sis,” IEEE Soft. 11(2): 21-32 (1994)

[91] R. Proynova, B. Paech, A. Wicht, T. Wetter. “Use of personal values
in requirements engineering: a research preview.” W’ing Conf. Req’ts
Engr.: Fnd. Soft. Qual., LNCS 6182 (2010).

[92] B. Ramesh, V. Dhar. “Supporting systems development by capturing
deliberations during requirements engineering,” IEEE Trans. Soft. Engr.,
18(6): 498-510 (1992).

[93] I. Ramos, D.M. Berry, “Is emotion relevant to requirements engineer-
ing?” Req’ts Engr. 10: 238–242 (2005).

[94] J.R. Reidenberg, J. Bhatia, T.D. Breaux, T.B. Norton, “Ambiguity in
privacy policies and the impact of regulation,” J. L. Studs. 45(S2) (2016).

[95] J. Ryan, A. Toner. “Europe’s enforcement paralysis: ICCL’s 2021 report
on the enforcement capacity of data protection authorities.” Irish Council
for Civil Liberties, 2021.

[96] F. Rivera-Ortiz, L. Pasquale “Automated modelling of security incidents
to represent logging requirements in software systems,” 15th Int’l Conf.
Avail., Rel. & Sec., 2020, Art. No.: 35.

[97] N. Sannier et al., “Legal markup generation in the large: an experience
report,” IEEE 25th Int’l Req’ts Engr. Conf., 2017, pp. 302-311.

[98] N. Sannier, M. Adedjouma, M. Sabetzadeh, et al. “An automated
framework for detection and resolution of cross references in legal texts.”
Req’ts Engr. 22, 215–237 (2017).

[99] L. da Silva Barboza, G. A. de A. Cysneiros Filho and R. A. C. de Souza,
“Towards a legal compliance verification approach on the procurement
process of IT solutions for the Brazilian Federal Public Administration,”
IEEE 7th Int’l W’shp Req’ts Engr. & Law, 2014, pp. 39-40.

[100] R. Sethi, D.C. Smith, W. Park. “Cross-functional product development
teams, creativity, and the innovativeness of new consumer products,” J.
Mark. Res. 38(1): 73-85 (2001).

[101] A. Siena, I. Jureta, S. Ingolfo, A. Susi, A. Perini, J. Mylopoulos,
“Capturing variability of law with Nómos 2.” In: Atzeni P., Cheung
D., Ram S. (eds) Conceptual Modeling, 2012, LNCS 7532 (2012).

[102] G. Sindre, A.L. Opdahl. “Eliciting security requirements with misuse
cases.” Req’ts Engr. 10: 34–44 (2005).

[103] A. Sleimi, M. Ceci, M. Sabetzadeh, L. C. Briand and J. Dann,
“Automated recommendation of templates for legal requirements,” IEEE
28th Int’l Req’ts Engr. Conf., 2020, pp. 158-168.

[104] A. Sleimi, M. Ceci, N. Sannier, M. Sabetzadeh, L. Briand and J. Dann,
“A query system for extracting requirements-related information from
legal texts,” IEEE 27th Int’l Req’ts Engr. Conf., 2019, pp. 319-329.

[105] A. Sleimi, N. Sannier, M. Sabetzadeh, L. Briand and J. Dann, “Au-
tomated extraction of semantic legal metadata using natural language
processing,” IEEE 26th Int’l Req’ts Engr. Conf., 2018, pp. 124-135.

[106] D.J. Solove, W. Hartzog. “The FTC and the new common law of
privacy,” Columbia L. Rev. 114(583) (2014).

[107] R. Stalnaker. “Common ground,” Ling. & Phil. 25(5/6): 701-721 (2002)
[108] J. -P. Steghöfer, B. Koopmann, J. S. Becker, M. Törnlund, Y. Ibrahim

and M. Mohamad, “Design decisions in the construction of traceability
information models for safe automotive systems,” IEEE 29th Int’l Req’ts
Engr. Conf., 2021, pp. 185-196.

[109] A. Sutcliffe, “Collaborative requirements engineering: bridging the
gulfs between worlds,” Intent’l Persp. Info. Sys. Engr., 2010, pp 355-376.

[110] K. Schwaber, J. Sutherland. The Scrum Guide - The Definitive Guide
to Scrum: The Rules of the Game, 2014. http://www.scrum.org

[111] G. Szulanski, D. Ringov, R.J. Jensen. “Overcoming stickiness: how the
timing of knowledge transfer methods affects transfer difficulty,” Org.
Sci. 27(2): 304-322 (2016)

[112] B. Tabrizi. “75% of cross-functional teams are dysfunctional,” Harvard
Bus. Rev., June 23, 2015.

[113] H. Taneja. “The era of ‘move fast and break things’ is over,” Harvard
Bus. Rev., January 22, 2019.

[114] S. Thew, A. Sutcliffe. “Value-based requirements engineering: method
and experience.” Req’ts Engr. 23: 443–464 (2018).

[115] S. Toulmin. The Uses of Argument. Camb. Univ. Press, 1969. .
[116] J. Vilela, J. Castro, L. E. G. Martins, T. Gorschek, “Integration between

requirements engineering and safety analysis: A systematic literature
review,” J. Sys. & Soft. 25: 68-92 (2017).

[117] N. Yavuz, N. Karkin, M. Yildiz. “E-Justice: a review and agenda for
future research.” Sci. Fnd. Dgt’l Gov. & Trans. Pub. Admin. & Info.
Tech., 38: 385-414, 2022.

